Lacunary Arithmetic convergence

Taja Yaying¹ and Bipan Hazarika*²
¹Department of Mathematics, Dera Natung Govt. College, Itanagar-791
111, Arunachal Pradesh, India
²Department of Mathematics, Rajiv Gandhi University, Rono Hills,
Doimukh-791 112, Arunachal Pradesh, India
Email: tajayaying20@gmail.com;
bipan.hazarika@rgu.ac.in/bh_rgu@yahoo.co.in

ABSTRACT. In this article we introduce and study the lacunary arithmetic convergent sequence space AC_{θ} . Using the idea of strong Cesàro summable sequence and arithmetic convergence we define AC_{σ_1} and study the relations between AC_{θ} and AC_{σ_1} . Finally using modulus function we define $AC_{\theta}(f)$ and study some interesting results.

Key Words: Lacunary sequence; modulus function; arithmetic convergence .

AMS Subject Classification No (2000): Primary 40A05; Secondary 46A70, 40A99, 46A99.

1. Introduction

Throughout, \mathbb{N} , \mathbb{R} and \mathbb{C} will denote the set of natural, real and complex numbers, respectively and $x = (x_k)$ denotes a sequence whose k^{th} term is x_k . Similarly $w, c, \ell_{\infty}, \ell_1$ denotes the space of all, convergent, bounded, absolutely summable sequences of complex terms, respectively.

We use the symbol < m, n > to denote the greatest common divisor of two integers m and n.

W.H.Ruckle [11], introduced the notions arithmetic convergence as a sequence $x=(x_m)$ is called arithmetically convergent if for each $\varepsilon>0$ there is an integer n such that for every integer m we have $|x_m-x_{< m,n>}|<\varepsilon$. We denote the sequence space of all arithmetic convergent sequence by AC. The studies on arithmetic convergence and related results can be found in [11, 13, 14, 15].

The notion of a modulus function was introduced in 1953 by Nakano [9]. We recall [7, 10] that a modulus f is a function $f:[0,\infty)\to[0,\infty)$ such that

- (i) f(x) = 0 if and only if x = 0,
- (ii) $f(x+y) \le f(x) + f(y)$ for all $x \ge 0, y \ge 0$,
- (iii) f is increasing,
- (iv) f is continuous from the right at 0.

^{*}The corresponding author.

Because of (ii), $|f(x) - f(y)| \le f(|x - y|)$ so that in view of (iv), f is continuous everywhere on $[0, \infty)$. A modulus may be unbounded (for example, $f(x) = x^p, 0) or bounded (for example, <math>f(x) = \frac{x}{1+x}$).

It is easy to see that f_1+f_2 is a modulus function when f_1 and f_2 are modulus functions, and that the function $f_i(i \text{ is a positive integer})$, the composition of a modulus function f with itself i times, is also a modulus function.

Ruckle [12] used the idea of a modulus function f to construct a class of FK spaces

$$X(f) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} f(|x_k|) < \infty \right\}.$$

The space X(f) is closely related to the space l_1 which is an X(f) space with f(x) = x for all real $x \ge 0$. Thus Ruckle [12] proved that, for any modulus f, $X(f) \subset l_1$. The space X(f) is a Banach space with respect to the norm $||x|| = \sum_{k=1}^{\infty} f(|x_k|) < \infty$. Spaces of the type X(f) are a special case of the spaces structured by Gram-

Spaces of the type X(f) are a special case of the spaces structured by Gramsch in [6]. By a lacunary sequence we mean an increasing integer sequence $\theta = (k_r)$ such that $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. In this paper the intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and also the ratio $\frac{k_r}{k_{r-1}}, r \ge 1, k_0 \ne 0$ will be denoted by q_r . The space of lacunary convergence sequence N_θ was defined by Freedman [3] as follows:

$$N_{\theta} = \left\{ x = (x_i) \in w : \lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} |x_i - l| = 0 \text{ for some } l \right\}.$$

The space N_{θ} is a BK-space with the norm

$$||x||_{N_{\theta}} = \sup_{r} \frac{1}{h_r} \sum_{i \in L} |x_i|.$$

The notion of lacunary convergence has been investigated by Çolak [2], Fridy and Orhan [4, 5], Tripathy and Et [16] and many others in the recent past.

The main purpose of this paper is to introduce and study the concept of lacunary arithmetic convergence.

2. Lacunary Arithmetic Convergence

In this section we introduce the lacunary arithmetic convergent sequence space AC_{θ} as follows:

$$AC_{\theta} = \left\{ (x_m) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{m \in I_r} |x_m - x_{< m, n > l}| = 0 \text{ for some integer } n \right\}.$$

Theorem 2.1. The sequence space AC_{θ} is linear.

Proof. Let (x_m) and (y_m) be two sequences in AC_{θ} . Then for an integer n

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{m \in I_r} |x_m - x_{< m, n>}| = 0 \text{ and } \lim_{r \to \infty} \frac{1}{h_r} \sum_{m \in I_r} |y_m - y_{< m, n>}| = 0.$$

Let α and β be two scalars, then there exist integers T_{α} and M_{β} such that $|\alpha| \leq T_{\alpha}$ and $|\beta| \leq M_{\beta}$. Thus

$$\frac{1}{h_r} \sum_{m \in I_r} |\alpha x_m + \beta y_m - (\alpha x_{< m, n >} + \beta y_{< m, n >})|$$

$$\leq T_\alpha \frac{1}{h_r} \sum_{m \in I_r} |x_m - x_{< m, n >}| + M_\beta \frac{1}{h_r} \sum_{m \in I_r} |y_m - y_{< m, n >}|$$

which implies that $\alpha x_m + \beta y_m \to \alpha x_{< m,n>} + \beta y_{< m,n>}$. Hence AC_{θ} is linear.

Theorem 2.2. If (x_m) is a sequence in AC then (x_m) is a sequence in AC_{θ} .

Proof. Let (x_m) be a sequence in AC. Then for $\varepsilon > 0$ there is an integer n such that

$$|x_m - x_{\leq m,n >}| < \varepsilon.$$

Now, for an integer n, we have

$$\frac{1}{h_r} \sum_{m \in I_r} |x_m - x_{< m, n>}| = \frac{1}{h_r} \left[\sum_{m=1}^{k_r} |x_m - x_{< m, n>}| - \sum_{m=1}^{k_{r-1}} |x_m - x_{< m, n>}| \right]
< \frac{1}{h_r} (h_r \varepsilon)
= \varepsilon.$$

Thus $(x_m) \in AC_{\theta}$.

Definition 2.3. [3] Let $\theta = (k_r)$ be a lacunary sequence. A lacunary refinement of θ is a lacunary sequence $\theta' = (k'_r)$ satisfying $(k_r) \subseteq (k'_r)$.

Theorem 2.4. If θ' is a lacunary refinement of a lacunary sequence θ and $(x_m) \in AC_{\theta'} \text{ then } AC_{\theta}.$

Proof. Suppose for each I_r of θ contains the point $(k'_{r,t})_{t=1}^{\eta(r)}$ of θ' such that

$$k_{r-1} < k'_{r,1} < k'_{r,2} < \ldots < k'_{\eta,\eta(r)} = k_r,$$

where $I'_{r,t} = \left(I'_{r,t-1}, I'_{r,t}\right]$. Since $(k_r) \subseteq (k'_r)$, so $r, \eta(r) \ge 1$. Let $(I^*)_{j=1}^{\infty}$ be the sequence of interval $(I^*_{r,t})$ ordered by increasing right end points. Since $(x_m) \in AC_{\theta'}$, then for each $\varepsilon > 0$,

$$\frac{1}{h_j^*} \sum_{\substack{I_i^* \subset I_r}} |x_m - x_{< m, n > l}| < \varepsilon.$$

Also, since $h_r = k_r - k_{r-1}$, so $h'_{r,t} = k'_{r,t} - k'_{r,t-1}$. For each $\varepsilon > 0$,

$$\frac{1}{h_r} \sum_{m \in I_r} |x_m - x_{< m, n>}| \le \frac{1}{h_j^*} \sum_{I_j^* \subset I_r} |x_m - x_{< m, n>}| < \varepsilon.$$

This implies $(x_m) \in AC_{\theta}$.

Based on the idea of strongly Cesàro summable sequences and arithmetic convergent sequences, we introduce a new sequence space AC_{σ_1} defined as follows:

$$AC_{\sigma_1} = \left\{ (x_m) : \text{there exists an integer } n \text{ such that } \frac{1}{t} \sum_{m=1}^t |x_m - x_{< m, n>}| \to 0 \text{ as } t \to \infty \right\}.$$

Functional analytic studies of the space $|\sigma_1|$ of strongly Cesàro summable sequences, and other closely related spaces can be found in [1, 8]. In this section we shall mostly focus on the connection between the spaces AC_{θ} and AC_{σ_1} .

Theorem 2.5. The sequence space AC_{σ_1} is a linear space.

Proof. The proof is a routine exercise and hence ommitted. \Box

Theorem 2.6. Let $\theta = (k_r)$ be a lacunary sequence. If $\liminf q_r > 1$ then $AC_{\sigma_1} \subseteq AC_{\theta}$.

Proof. Let $(x_m) \in AC_{\sigma_1}$ and $\liminf q_r > 1$. Then there exists $\delta > 0$ such that $q_r = \frac{k_r}{k_{r-1}} \ge 1 + \delta$ for sufficiently large r. We can also choose a sufficiently large r so that $\frac{k_r}{k_r} \le \frac{1+\delta}{\delta}$. Then

$$\frac{1}{k_r} \sum_{m=1}^{k_r} |x_m - x_{< m, n>}|
\ge \frac{1}{k_r} \sum_{m \in I_r} |x_m - x_{< m, n>}|
= \frac{h_r}{k_r} \left(h_r^{-1} \sum_{m \in I_r} |x_m - x_{< m, n>}| \right)
\ge \frac{\delta}{1+\delta} \left(h_r^{-1} \sum_{m \in I_r} |x_m - x_{< m, n>}| \right)$$

which proves that $(x_m) \in AC_{\theta}$.

Theorem 2.7. For $\limsup q_r < \infty$, we have $AC_{\theta} \subseteq AC_{\sigma_1}$.

Proof. Let $\limsup q_r < \infty$ then there exists K > 0 such that $q_r < K$ for every r. Now for $\varepsilon > 0$ and $(x_m) \in AC_\theta$ there exists R such that for every $r \geq R$,

$$\tau_r = \frac{1}{h_r} \sum_{m \in I_r} |x_m - x_{\leq m, n \geq 1}| < \varepsilon.$$

We can also find T>0 such that $\tau_r\leq T\ \forall r.$ Let t be any integer with $k_r\geq t\geq k_{r-1}.$ Then

$$\begin{split} &\frac{1}{t} \sum_{m=1}^{t} |x_m - x_{< m, n}\rangle| \\ &\leq \frac{1}{k_{r-1}} \sum_{m=1}^{k_r} |x_m - x_{< m, n}\rangle| \\ &= \frac{1}{k_{r-1}} \sum_{i=1}^{R} \sum_{m \in I_i} |x_m - x_{< m, n}\rangle| + \frac{1}{k_{r-1}} \sum_{i=R+1}^{k_r} \sum_{m \in I_i} |x_m - x_{< m, n}\rangle| \\ &\leq \frac{1}{k_{r-1}} \sum_{i=1}^{R} \sum_{m \in I_i} |x_m - x_{< m, n}\rangle| + \frac{1}{k_{r-1}} \left(\varepsilon(k_r - k_R)\right) \\ &\leq \frac{1}{k_{r-1}} \sum_{i=1}^{R} h_i \tau_i + \frac{1}{k_{r-1}} \left(\varepsilon(k_r - k_R)\right) \\ &\leq \frac{1}{k_{r-1}} \left(\sup_{i \leq R} \tau_i k_R\right) + \varepsilon K \\ &< \frac{k_R}{k_{r-1}} T + \varepsilon K \end{split}$$

from which we deduce that $(x_m) \in AC_{\sigma_1}$.

The following corollary follows from Threoms 2.6 and 2.7.

Corollary 2.8. If $1 < \liminf q_r \le \limsup q_r < \infty$, then $AC_{\theta} = AC_{\sigma_1}$.

Next we introduce the lacunary arithmetic convergent sequence space $AC_{\theta}(f)$ defined by modulus function f. Let f be a modulus function. We define

$$AC_{\theta}(f) = \left\{ (x_m) : \text{there exists an integer } n \text{ such that } \frac{1}{h_r} \sum_{m \in I_r} f(|x_m - x_{< m, n>}|) \to 0 \text{ as } r \to \infty \right\}.$$

Note that if we put f(x) = x, then $AC_{\theta}(f) = AC_{\theta}$.

Theorem 2.9. The sequence space $AC_{\theta}(f)$ is a linear space.

Proof. Let (x_m) and (y_m) be two sequences in $AC_{\theta}(f)$. Then for an integer n and $\varepsilon > 0$,

$$\frac{1}{h_r} \sum_{m \in I_r} f(|x_m - x_{< m, n>}|) \to 0 \text{ and } \frac{1}{h_r} \sum_{m \in I_r} f(|y_m - y_{< m, n>}|) \to 0 \text{ as } r \to \infty.$$

Let α and β be two scalars, then there exist integers T_{α} and M_{β} such that $|\alpha| \leq T_{\alpha}$ and $|\beta| \leq M_{\beta}$. Thus

$$\frac{1}{h_r} \sum_{m \in I_r} f(|\alpha x_m + \beta y_m - (\alpha x_{< m, n}) + \beta y_{< m, n})|)
\leq T_\alpha \frac{1}{h_r} \sum_{m \in I_r} f(|x_m - x_{< m, n}|) + M_\beta \frac{1}{h_r} \sum_{m \in I_r} f(|y_m - y_{< m, n}|)
\to 0 \text{ as } r \to \infty$$

which implies that $\alpha x_m + \beta y_m \to \alpha x_{\leq m,n} + \beta y_{\leq m,n}$ in $AC_{\theta}(f)$. Hence $AC_{\theta}(f)$ is linear.

Proposition 2.10. [10] Let f be a modulus and let $0 < \delta < 1$. Then for each $x \ge \delta$, we have $f(x) \le 2f(1)\delta^{-1}x$.

Theorem 2.11. Let f be any modulus such that $\lim_{t\to\infty} \frac{f(t)}{t} = \beta > 0$ then $AC_{\theta}(f) = AC_{\theta}$.

Proof. Let $(x_m) \in AC_{\theta}$, then for an integer n,

$$\tau_r = \frac{1}{h_r} \sum_{m \in I_r} |x_m - x_{< m, n>}| \to 0 \text{ as } r \to \infty.$$

Let $\varepsilon > 0$ be given. We choose $0 < \delta < 1$ such that $f(u) < \varepsilon$ for every u with $0 \le u \le \delta$. We can write

$$\frac{1}{h_r} \sum_{m \in I_r} f(|x_m - x_{< m, n>}|)
= \frac{1}{h_r} \sum_{\substack{m \in I_r; \\ |x_m - x_{< m, n>}| \le \delta}} f(|x_m - x_{< m, n>}|) + \frac{1}{h_r} \sum_{\substack{m \in I_r; \\ |x_m - x_{< m, n>}| > \delta}} f(|x_m - x_{< m, n>}|)
\le \frac{1}{h_r} (h_r \varepsilon) + 2f(1)\delta^{-1} \tau_r, \text{ using (Proposition 2.10)}
\to 0 \text{ as } r \to \infty.$$

Therefore $(x_m) \in AC_{\theta}(f)$.

Till this part of the proof we do need $\beta > 0$. Now let $\beta > 0$ and let $(x_m) \in AC_{\theta}(f)$. Since $\beta > 0$, we have $f(t) \geq \beta t \ \forall t \geq 0$. Hence it follows that $(x_m) \in AC_{\theta}$.

References

- D. Borwein, Linear functionals connected with strong Cesàro summability, J. Lond. Math. Soc. 40(1965) 628-634.
- [2] R. Çolak, Lacunary strong convergence of difference sequences with respect to a modulus function, Filomat 17(2003) 9-14.
- [3] A. R. Freedman, J. J. Sember, M. Raphael, Some Cesàro-type summability spaces, Proc. Lond. Math. Soc. 37(1978) 508-520.
- [4] J. A. Fridy, C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl. 173(2)(1993) 497-504.
- [5] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160(1)(1993) 43-51.
- [6] B. Gramsch, Die Klasse metrisher linearer Räume \mathcal{L}_{ϕ} , Math. Ann. 171(1)(1967) 61-78

- [7] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc. 100 (1986) 161166.
- [8] I.J. Maddox, Spaces of strongly summably sequences, Quart. J. Math. Oxford (2)18 (1967) 345-55.
- [9] H. Nakano, Concave modulars, J. Math. Soc. Japan 5 (1953) 2949.
- [10] S. Pehlivan, B. Fisher, On Some Sequence Space, Indian J. Pure Appl. 25(10)(1994) 1067-1071.
- [11] W. H. Ruckle, Arithmetical Summability, J. Math. Anal. Appl. 396(2012) 741-748.
- [12] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978.
- [13] Taja Yaying and Bipan Hazarika, On arithmetical summability and multiplier sequences, National Academy Sci. Letters 40(1)(2017) 43-46.
- [14] Taja Yaying and Bipan Hazarika, On arithmetic continuity, Bol. Soc. Parana. Mat. 35(1)(2017) 139-145.
- [15] Taja Yaying, Bipan Hazarika and Huseyin Çakalli, New results in quasi cone metric spaces, J. Math. Comput. Sci. 16(3)(2016) 435-444.
- [16] B. C. Tripathy, M. Et, On generalized difference lacunary statistical convergence, Studia Univ. Babes-Bolyai Math. 50(1)(2005) 119-130.